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Abstract  

  In order to evaluate the critical temperature for Bose- Einstein Condensation of 

the atom molecule mixture at the fixed total atomic density, one studies the effective atom-

molecular theory. In this study one considers the real-time dynamics of the system by driving 

the Heisenberg equation of motion for the field operators that annihilate an atom and a 

molecule at a given space and time. To determine the Heisenberg equation of motion for 

these field operators, one first have to perform an analytical continuation from the Matsusara 

frequencies to real frequencies. For simplicity, one assumes that one is close to the resonance 

and one is allowed to neglect the energy dependence of the effective atomic interactions and 

the effective atom-molecule coupling. Moreover, one takes only the leading order energy 

dependence of the molecular self-energy into account.  

 Introduction  

Higher order are straight forwardly included. The leading order energy 

dependence of the self-energy is after Wick rotation is the real energies. For the positive 

energy E, this result is in agreement with Wigner-threshold law. This law gives the rate for a 

static wiut a well defined positive energy to decav into three dirmensional contritim. In order 

to study the properties of the gas in the normal state, one considers the two-atom properties 

of many-body theory. One can show that the effective field theory corectly contains the two-

atom physics of a Feshback resonance.  Firstly, one shows that the correct Feshbach-resonant 

atomic scattering length is obtained after the elimination of the molecular field. Secondly, one 

calculates the bound energy and shows that it has the correct threshold behaviour near the 

resonance. To get more insight in the nature of the molecular state near the resonance, one 

also investigates the molecular density of states.  
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To calculate the effective interatomic scattering length, one has to eliminate the 

molecular field from the Heisenberg equation of motion. Since the scattering length is related 

to the scattering amplitude at zero energy and zero momentum, one is allowed to put all the 

time and spatial derivatives in the equation of motion for the molecular field operator equal 

to zero. The scattering length wear a Feshbach resonance is given by 

a(B) = abg + ares (B) 

where abg 18 the background scattering length and ares (B) the Feshbach resonance. The 

energy of the molecular state is determined by the poles of the retarded molecular 

propagator. For positve detuning 𝛿 (B) there only exists a pole with a non-zero and negative 

imaginary part. This is in agreement with the fact that the molecule decays when its energy is 

above the two atom continuum threshold. The imaginary part of the energy is related to the 

lifetime of the molecular state. For negative detuning the molecular propagator has a real and 

negative pole corresponding to the bound state energy.  

The molecular density of state is obtained by taking the imaginary part of the retarded 

molecular propagator. One can discuss only the situation when one is close to resonance and 

therefore approximate the retarded molecular self-energy by the square root term resulting 

from Wigner threshold law. For the case of negative detuning, the molecular density of states 

has two contributions. One arising from the pole at the bound state energy and the second 

from the two atom continuum. Then one defines the wave function renormalization factor 

Z(B). This factor goes to zero as one approaches the resonance and it becomes equal to one 

far off resonance. Far off resonances, the bound state of the coupled channels ie. the dressed 

molecules is almost equal to the bound state of the closed channel potential and has zero 

amplitude in the open channel. This corresponds to the situation. A the resonances is 

approached, the dressed molecule contain only with an amplitude. The closed channel bound 

state i.e. bare molecule. Accordingly, the contribution of the open channel becomes larger and 

gives rise to the threshold behaviour of the bound state energy. For positive detuning the 

molecular density of states has only a contribution for positive energy.  
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Theory  

Mathematical Formulae Used In The Evaluation  

The equilibrium properties of the gas are determined by the equation of state, which 

relates the total density of the gas to the chemical potential. This equation can be calculated 

in two ways, either by calculating the thermodynamic potential and differentiating with 

respect to the chemical potential, or by directly calculating the expectation value of the 

operator for the total density. 

The so-called ring diagrams that contribute to the thermodynamic potential in this 

approximation. The full molecular propagator is denoted by the thick dashed line and the no 

interacting molecular propagator are indicated by the thin solid lines.  

After performing the summation over the Matsubara frequencies in this expression the 

first term corresponds to the density of an ideal gas of bosons. The second term is more 

complicated and should, in principle, be dealt with numerically. For negative detuning one can 

gain physical insight, however, by within the approximations, in first instance it in given ty the 

First, one calculates the thermodynamic potential expression atomic propagator of the atoms. 

The full molecular propagator is given Here, we recall that Go.ak, io ) is the noninteracting 

where AE is the molecule self energy. The so-called ring diagrams that contribute to the 

thermodynamic potential in this approximation are given in Fig, 4A. The full molecular 

propagator is denoted by the thick dashed line and the noninteracting molecular propagator 

are indicated by the thin solid lines. The total atomic density is calculated by using the 

thermodynamic identity N=-an(u, T)/Ou, which results in (4.3) After performing the 

summation over the Matsubara frequencies in this expression the first term corresponds to 

the density of an ideal gas of bosons. The second term in Eq. (4.3) is more complicated and 

should, in principle, be dealt with numerically. For negative detuning one can gain physical 

insight, however, by 

An important difference between directly calculating the density in this manner and 

calculating it indirectly from the thermodynamic potential is that one should not the no 

interacting atomic propagator. Instead, one should use an approximation to the atomic 

propagator that contains the same self- energy diagrams. Conversely, in calculating the 
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thermodynamic potential. one should not use the full atomic propagator. The reason for this 

that if one calculates ring diagrams with this propagator one find diagrams which are already 

contained in the ring diagram of the full molecular propagator.  

If one uses for the atomic propagator the approximation given diagrammatically. The 

ring diagram that contributes to the thermodynamic potential. On other hand, if one uses for 

the molecular propagator the approximation given in Fig. 4B(c) the resulting ring diagram. 

Clearly to avoid double counting problems in the calculation of the thermodynamic potential, 

one should take only one of these diagrams into account. However, if one calculates the 

density directly from the atomic and molecular propagator one should use both the diagrams. 

One, now argues that the directly caleulating the density, again for negative detuning, one 

indeed recovers the result. One first calculates the contribution arising from the molecular 

propagator. It is found to be equal to Adv XP Taking into account only the pole in the density 

of states leads to the result. At first sight this result seems a factor Z(B) to small to agree with 

the result. However, one has, in fact, that the contribution from the atoms to the density 

results in a term proportional. Taking this into account, the result from the direct calculation 

agrees with the result. obtained previously. A different way for obtaining the factor (2 - 2z(B)] 

in the atomic density is to include the self-energy diagram. The corresponding mathematical 

expression in first instance is given by the physics of this expression, one notes (k+4,i.)G, that if 

one neglects the energy and momentum dependence or ahe molecular propagator one has 

that G(k, io,)=A/5(B). Withmuns approximation the self-energy is given by 8 n n,ares(B)A2/m, 

which corresponds precisely to the Feshbach-resonant part of the self- consistent Hartree-

Fock self-energy of the atoms, as expected from the diagram. The full calculation of the 

expression for the self-energy is complicated due the fact that one has to uses the full atomic 

and molecular propagators, which makes the calculation self- consistent. To illustrate in 

perturbation theory that one is able to reproduce the result let us simply take the 

noninteracting atomic and molecular propagators. The self-energy is then given by To 

compare with the two-atom calculation for negative detuning performed, one must takes only 

one other atom present Ak, and no molecules. The self-energy is then with momentum. 
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Density Of Atoms And Molecules  

The density of the gas is most easily calculated. One reports all our results as a function 

of the detuning in units of the energy g*m/n 2n°. The temperature is given in units of the 

critical temperature for Bose-Einstein condensation of an ideal as of atoms with a total 

density. 

The total number of atoms is, of course, also constant throughout the sweep. As one 

has seen, for sufficiently large absolute values of the detuning, the gas is well-described by an 

ideal-gas approximation. For simplicity. one will therefore treat the gas here as an ideal-gas 

mixture since one is mostly interested in the final density of atoms and molecules and the final 

temperature of the gas after he sweep, for which an ideal-gas treatment is sufficiently.  

Discussion of Results  

We have evaluated the critical temperature for Bose-Einstein Condensation (BEC) 

for the atom-molecule mixture at the fixed total atomic density. In table 4T1, we have shown 

the temperature of the gas as a function of the detuning for a sweep through the resonance 

from positive to negative detuning for two initial temperature T-2 To and 4 To. The total 

density is equal to n - 1013 cm, The gas is heated as the detuning is changed from positive to 

negative. This is easily understood, since molecules form as the detuning is changed from 

positive to negative values, and their binding energy is released as kinetic energy into the gas. 

In table 4Ta, we have given the evaluated result of critical temperature for Bose-Einstein 

Condensation of the atom-molecule mixture at a fixed total atomic density n = 10cm , Two 

results are given one for the exact calculation and other of treating the gas as an ideal gas 

mixture. 

For positive detuning and far from the resonance, one is essentially dealing with an 

atomic gas. Hence one has in this regime TBEC - To. For sufficiently negative detuning, one is 

dealing with a gas of molecules with twice the atomic traps and the one has TBEC-(2/STo). The 

feature in the critical temperature at zero detuning turns out to be a signature of true 

thermodynamic phase transition between a phase with a single Bose-Einstein Condensates of 

molecules and a phase contary two Bose-Einstein Condensates, one of atoms and one of 
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molecules. This was first pointed out by Sachder. This should be contrasted with the situation 

of atomic Fermi gas near a Fesh bach resonance, where only a BCS-BEC cross-over exists.  
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